Part Number Hot Search : 
CAVA6BP PA2004C ABE0121 716Q6V BZX84 2645TT A1211 ER1003F
Product Description
Full Text Search
 

To Download IRFP2907PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD -95050
AUTOMOTIVE MOSFET
Typical Applications

IRFP2907PBF
HEXFET(R) Power MOSFET
D
Integrated Starter Alternator 42 Volts Automotive Electrical Systems Lead-Free Advanced Process Technology Ultra Low On-Resistance Dynamic dv/dt Rating 175C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax
G
VDSS = 75V RDS(on) = 4.5m
Benefits

S
ID = 209A
Description
Specifically designed for Automotive applications, this Stripe Planar design of HEXFET(R) Power MOSFETs utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 175C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.
TO-247AC
Absolute Maximum Ratings
Parameter
ID @ TC = 25C ID @ TC = 100C IDM PD @TC = 25C VGS EAS IAR EAR dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw
Max.
209 148 840 470 3.1 20 1970 See Fig.12a, 12b, 15, 16 5.0 -55 to + 175 300 (1.6mm from case ) 10 lbf*in (1.1N*m)
Units
A W W/C V mJ A mJ V/ns C
Thermal Resistance
Parameter
RJC RCS RJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient
Typ.
--- 0.24 ---
Max.
0.32 --- 40
Units
C/W
www.irf.com
1
2/26/04
IRFP2907PBF
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
V(BR)DSS
V(BR)DSS/TJ
RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss Coss Coss Coss eff.
Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time
Min. 75 --- --- 2.0 130 --- --- --- --- --- --- --- --- --- --- --- --- ---
Typ. --- 0.085 3.6 --- --- --- --- --- --- 410 92 140 23 190 130 130 5.0 13
--- 13000 --- 2100 --- 500 --- 9780 --- 1360 --- 2320
Max. Units Conditions --- V VGS = 0V, ID = 250A --- V/C Reference to 25C, ID = 1mA 4.5 m VGS = 10V, ID = 125A 4.0 V VDS = 10V, ID = 250A --- S VDS = 25V, ID = 125A 20 VDS = 75V, VGS = 0V A 250 VDS = 60V, VGS = 0V, TJ = 150C 200 VGS = 20V nA -200 VGS = -20V 620 ID = 125A 140 nC VDS = 60V 210 VGS = 10V --- VDD = 38V --- ID = 125A ns --- RG = 1.2 --- VGS = 10V D Between lead, --- 6mm (0.25in.) nH G from package --- and center of die contact S --- VGS = 0V --- pF VDS = 25V --- = 1.0MHz, See Fig. 5 --- VGS = 0V, VDS = 1.0V, = 1.0MHz --- VGS = 0V, VDS = 60V, = 1.0MHz --- VGS = 0V, VDS = 0V to 60V
Source-Drain Ratings and Characteristics
Min. Typ. Max. Units IS
ISM
VSD trr Qrr ton Notes:
Conditions D MOSFET symbol --- --- 209 showing the A G integral reverse --- --- 840 S p-n junction diode. --- --- 1.3 V TJ = 25C, IS = 125A, VGS = 0V --- 140 210 ns TJ = 25C, IF = 125A --- 880 1320 nC di/dt = 100A/s Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11). Starting TJ = 25C, L = 0.25mH RG = 25, IAS = 125A. (See Figure 12). ISD 125A, di/dt 260A/s, VDD V(BR)DSS, TJ 175C Pulse width 400s; duty cycle 2%.
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS . Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 90A. Limited by T Jmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
2
www.irf.com
IRFP2907PBF
1000
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
1000
I D , Drain-to-Source Current (A)
100
I D , Drain-to-Source Current (A)
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
100
10
4.5V
4.5V
1 0.1
20s PULSE WIDTH TJ = 25 C
1 10 100
10 0.1
20s PULSE WIDTH TJ = 175 C
1 10 100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
3.0
RDS(on) , Drain-to-Source On Resistance (Normalized)
ID = 209A
I D , Drain-to-Source Current (A)
TJ = 175 C
2.5
100
2.0
TJ = 25 C
1.5
10
1.0
0.5
1 4.0
V DS = 25V 20s PULSE WIDTH 5.0 6.0 7.0 8.0 9.0 10.0
0.0 -60 -40 -20 0
VGS = 10V
20 40 60 80 100 120 140 160 180
VGS , Gate-to-Source Voltage (V)
TJ , Junction Temperature ( C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
www.irf.com
3
IRFP2907PBF
20000 VGS = 0V, f = 1 MHZ Ciss = C + Cgd, C gs ds SHORTED Crss = C gd Coss = C + C ds gd
20
ID = 125A VDS = 60V VDS = 37V
16000
VGS , Gate-to-Source Voltage (V)
16
C, Capacitance(pF)
Ciss
12000
12
8000
8
4000
Coss Crss
1 10 100
4
0
0
FOR TEST CIRCUIT SEE FIGURE 13
0 100 200 300 400 500 600 700
VDS, Drain-to-Source Voltage (V)
QG , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
1000
10000
ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED BY RDS(on)
TJ = 175 C
ID , Drain Current (A)
100
1000 10us
10
100us
TJ = 25 C
1
100 1ms
0.1 0.0
V GS = 0 V
0.5 1.0 1.5 2.0 2.5 3.0
10
TC = 25 C TJ = 175 C Single Pulse
1 10
10ms 100 1000
VSD ,Source-to-Drain Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRFP2907PBF
240
LIMITED BY PACKAGE
200
VDS VGS RG 10V
Pulse Width 1 s Duty Factor 0.1 %
RD
D.U.T.
+
ID , Drain Current (A)
160
-VDD
120
80
Fig 10a. Switching Time Test Circuit
VDS 90%
40
0
25
50
TC , Case Temperature ( C)
75
100
125
150
175
Fig 9. Maximum Drain Current Vs. Case Temperature
10% VGS
td(on) tr t d(off) tf
Fig 10b. Switching Time Waveforms
1
Thermal Response (Z thJC )
D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 PDM SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.0001 0.001 0.01 0.1 1
0.01
0.001 0.00001
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFP2907PBF
EAS , Single Pulse Avalanche Energy (mJ)
15V
5000
VDS
L
DRIVER
4000
ID 51A 88A BOTTOM 125A TOP
RG
20V
D.U.T
IAS tp
+ - VDD
3000
A
0.01
2000
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS tp
1000
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature ( C)
I AS
Fig 12b. Unclamped Inductive Waveforms
QG
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
10 V
QGS
QGD
4.0
VG
3.5
Fig 13a. Basic Gate Charge Waveform
Current Regulator Same Type as D.U.T.
VGS(th) , Variace ( V )
Charge
3.0
ID = 250A
2.5
50K 12V .2F .3F
2.0
D.U.T. VGS
3mA
+ V - DS
1.5
1.0
IG ID
-75 -50 -25
0
25
50
75
100 125 150 175
Current Sampling Resistors
T J , Temperature ( C )
Fig 13b. Gate Charge Test Circuit
Fig 14. Threshold Voltage Vs. Temperature
6
www.irf.com
IRFP2907PBF
1000
Duty Cycle = Single Pulse
Avalanche Current (A)
100
0.01
Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25C due to avalanche losses
0.05 0.10
10
1 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
Fig 15. Typical Avalanche Current Vs.Pulsewidth
tav (sec)
2000
EAR , Avalanche Energy (mJ)
1600
TOP Single Pulse BOTTOM 10% Duty Cycle ID = 125A
1200
800
400
0 25 50 75 100 125 150
Starting T J , Junction Temperature (C)
Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asT jmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav *f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3*BV*Iav) = DT/ ZthJC Iav = 2DT/ [1.3*BV*Zth] EAS (AR) = PD (ave)*tav
Fig 16. Maximum Avalanche Energy Vs. Temperature
www.irf.com
7
IRFP2907PBF
Peak Diode Recovery dv/dt Test Circuit
D.U.T*
+
+
Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer
-
+
RG VGS * dv/dt controlled by RG * ISD controlled by Duty Factor "D" * D.U.T. - Device Under Test
+ VDD
*
Reverse Polarity of D.U.T for P-Channel
Driver Gate Drive P.W. Period D=
P.W. Period
[VGS=10V ] ***
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
[VDD]
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple 5%
[ISD ]
*** VGS = 5.0V for Logic Level and 3V Drive Devices Fig 17. For N-channel HEXFET(R) power MOSFETs
8
www.irf.com
IRFP2907PBF
TO-247AC Package Outline
15.90 (.626) 15.30 (.602) -B3.65 (.143) 3.55 (.140) -A0.25 (.010) M D B M 5.50 (.217) 20.30 (.800) 19.70 (.775) 1 2 3 -C14.80 (.583) 14.20 (.559) 4.30 (.170) 3.70 (.145) 0.80 (.031) 3X 0.40 (.016) C AS 2.60 (.102) 2.20 (.087)
Dimensions are shown in millimeters (inches)
-D5.30 (.209) 4.70 (.185)
2.50 (.089) 1.50 (.059) 4
2X
5.50 (.217) 4.50 (.177)
NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH. 3 CONFORMS TO JEDEC OUTLINE TO-247-AC.
2.40 (.094) 2.00 (.079) 2X 5.45 (.215) 2X
1.40 (.056) 3X 1.00 (.039) 0.25 (.010) M 3.40 (.133) 3.00 (.118)
LEAD ASSIGNMENTS Hexfet IGBT 1 -LEAD ASSIGNMENTS Gate 1 - Gate 12 - Drain GATE2 - Collector 2 - DRAIN 3 - Source 3 - Emitter 3 - SOURCE 4 - Drain DRAIN - Collector 4 4-
TO-247AC Part Marking Information
EXAMPLE: T HIS IS AN IRFPE30 WIT H ASSEMBLY LOT CODE 5657 ASSEMBLED ON WW 35, 2000 IN THE AS SEMBLY LINE "H"
Note: "P" in assembly line position indicates "Lead-Free"
INT ERNATIONAL RECT IFIER LOGO ASSEMBLY LOT CODE
PART NUMBER
IRFPE30
56 035H 57
DAT E CODE YEAR 0 = 2000 WEEK 35 LINE H
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.02/04
www.irf.com
9
Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/


▲Up To Search▲   

 
Price & Availability of IRFP2907PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X